Unconstrained Recursive Importance Sampling

نویسنده

  • Vincent Lemaire
چکیده

We propose an unconstrained stochastic approximation method of finding the optimal measure change (in an a priori parametric family) for Monte Carlo simulations. We consider different parametric families based on the Girsanov theorem and the Esscher transform (or exponentialtilting). In a multidimensional Gaussian framework, Arouna uses a projected Robbins-Monro procedure to select the parameter minimizing the variance (see [2]). In our approach, the parameter (scalar or process) is selected by a classical Robbins-Monro procedure without projection or truncation. To obtain this unconstrained algorithm we intensively use the regularity of the density of the law without assume smoothness of the payoff. We prove the convergence for a large class of multidimensional distributions and diffusion processes. We illustrate the effectiveness of our algorithm via pricing a Basket payoff under a multidimensional NIG distribution, and pricing a barrier options in different markets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of computing both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro procedure based on Rockaffelar-Uryasev’s identity for the CVaR. The convergence rate of this algorithm to ...

متن کامل

Computation of VaR and CVaR using stochastic approximations and unconstrained importance sampling

Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of computing both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro procedure based on Rockaffelar-Uryasev’s identity for the CVaR. The convergence rate of this algorithm to ...

متن کامل

Computing VaR and CVaR using stochastic approximation and adaptive unconstrained importance sampling

Value-at-Risk (VaR) and Conditional-Value-at-Risk (CVaR) are two risk measures which are widely used in the practice of risk management. This paper deals with the problem of estimating both VaR and CVaR using stochastic approximation (with decreasing steps): we propose a first Robbins-Monro (RM) procedure based on Rockafellar-Uryasev’s identity for the CVaR. Convergence rate of this algorithm t...

متن کامل

Quantization based recursive importance sampling

We investigate in this paper an alternative method to simulation based recursive importance sampling procedure to estimate the optimal change of measure for Monte Carlo simulations. We propose an algorithm which combines (vector and functional) optimal quantization with Newton-Raphson zero search procedure. Our approach can be seen as a robust and automatic deterministic counterpart of recursiv...

متن کامل

High-Accuracy Real-Time Whole-Body Human Motion Tracking Based on Constrained Nonlinear Kalman Filtering

We present a new online approach to track human whole-body motion from motion capture data, i.e., positions of labeled markers attached to the human body. Tracking in noisy data can be effectively performed with the aid of well-established recursive state estimation techniques. This allows us to systematically take noise of the marker measurements into account. However, as joint limits imposed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010